Volume 5, Issue 3 (9-2023)                   sjis 2023, 5(3): 1-3 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nezami Behrooz D. Comparison of some Iterative Methods for Finding Simple Root of Nonlinear Equations. sjis 2023; 5 (3) :1-3
URL: http://sjis.srpub.org/article-5-199-en.html
Department of Mathematics, Tuyserkan Branch, Islamic Azad University, Tuyserkan, Iran
Abstract:   (226 Views)
We give a comparison of some iterative methods without memory for approximating a simple root of nonlinear equations presented in recent years. The efficacy of the present methods is tested on a number of numerical examples.
Full-Text [PDF 275 kb]   (118 Downloads)    
Type of Study: Research | Subject: Applied Mathematics
Received: 2023/07/11 | Revised: 2023/08/22 | Accepted: 2023/08/28 | Published: 2023/09/15

References
1. Chun, C., A family of composite fourth-order iterative methods for solving nonlinear equations, Appl. Math.Comput., 187, 951 - 956 (2007) [DOI:10.1016/j.amc.2006.09.009]
2. Cordero, A., Torregrosa, J.R., Variants of Newton's method using fifth-order quadrature formulas, Applied Mathematics and Computation, 190, 686 - 698 (2007) [DOI:10.1016/j.amc.2007.01.062]
3. King, R.F.: A family of fourth order methods for nonlinear equations, SIAM J. Numer. Anal. 10, 876 - 879 (1973) [DOI:10.1137/0710072]
4. Kou, J., Li, Y., Wang, X., A composite fourth-order iterative method, Appl. Math. Comput., 184, 471 - 475 (2007) [DOI:10.1016/j.amc.2006.05.181]
5. Kung, H.T., Traub, J.F., Optimal order of one-point and multipoint iteration, J. Assoc. Comput. Math., 21, 634 - 651, (1974) [DOI:10.1145/321850.321860]
6. Maheshwari, A.K., A fourth-order iterative method for solving nonlinear equations, Appl. Math. Comput., 211, 383 - 391 (2009) [DOI:10.1016/j.amc.2009.01.047]
7. Ostrowski, A.M.: Solution of Equations and Systems of Equations, Academic Pres, New York (1960)
8. Traub, J.F., Iterative Methods for the Solution of Equations, Prentice Hall, New York, (1964)
9. Weerakoon, S., Fernando, T.G.I., A variant of Newton's method with accelerated third-order convergence, Applied Mathematics Letters, 13, 87 - 93 (2000) [DOI:10.1016/S0893-9659(00)00100-2]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.