Volume 4, Issue 2 (4-2022)                   sjis 2022, 4(2): 1-8 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Arasteh H. Promises of Interdependent Power and Energy Systems for Future Smart Cities. sjis 2022; 4 (2) :1-8
URL: http://sjis.srpub.org/article-5-170-en.html
Power Systems Operation and Planning Research Department, Niroo Research Institute, Tehran, Iran.
Abstract:   (454 Views)
Smart cities aim at providing hardware and software platforms to enable novel functionalities. The main goal is to integrate modern technologies while upgrading the available resources at all systems within the future cities, including power systems, communication networks, societal networks, and transportation networks. Each subsystem in the smart cities has specific objectives and operational constraints. The ultimate goal of smart cities is to improve the quality of life while making sure all technologies are deployed in a sustainable manner. In this context, due to the ever-increasing electrification at various networks, power system modernization plays a pivotal role in city smartification. Interdependent power and energy networks can expedite the path towards intelligent infrastructures by supplying reliable and sustainable energy to the end-users. The main focus of this paper is on the promises of modern power systems for future smart cities. To this end, first the current practices for the transition from conventional fossil-fuel-based power systems towards smart grids are explained which are more reliable, secure, and environmental-friendly. Then, the potential advantages and contributions of modern power systems in smart cities are explored. As an example of emerging technologies in power systems that affect the future smart cities, demand response programs and their corresponding mathematical formulations are explained.
Full-Text [PDF 469 kb]   (178 Downloads)    
Type of Study: Research | Subject: Urban Design
Received: 2022/01/18 | Revised: 2022/02/20 | Accepted: 2022/02/25 | Published: 2022/04/10

References
1. Elias Bibri S, Krogstie J. Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustain City. Soc. 2017; 31: 183-212. [DOI:10.1016/j.scs.2017.02.016]
2. Paola Dameri R. Smart city implementation. Springer International Publishing, 2017. [DOI:10.1007/978-3-319-45766-6] [PMID]
3. Hoon Kim J. Smart city trends: A focus on 5 countries and 15 companies. City. 2022; 123: 103551. [DOI:10.1016/j.cities.2021.103551]
4. Moazzen F, Shahhoseini O, Arasteh H, Mirsadeghi SM, Jabari F. Emerging business models for IoT-based smart distribution systems. Publisher: Springer, Book title: Synergy development in renewables assisted multi-carrier systems toward green smart grids, 2022; 461-495. doi: 10.1007/978-3-030-90720-4_17 [DOI:10.1007/978-3-030-90720-4_17]
5. TohMun H, Low L. The intelligent city: Singapore achieving the next lap: Practitoners forum. Tech Anal Strat Manag. 1993; 5.2: 187-202. [DOI:10.1080/09537329308524129]
6. Amini MH, Arasteh H, Siano P. Sustainable smart cities through the lens of complex interdependent infrastructures: Panorama and state-of-the-art. Sustainable Interdependent Networks II. Springer, Cham, 2019; 45-68. [DOI:10.1007/978-3-319-98923-5_3]
7. Arasteh H, Hosseinnezhad V, Loia V, Tommasetti A, Troisi O, Shafie-Khah M, Siano P. IoT-based smart cities: a survey. 16 IEEE International Conference on Environment and Electrical Engineering (EEEIC), Florence, Italy, 2016; 7-10. [DOI:10.1109/EEEIC.2016.7555867]
8. Amini MH, et al. A panorama of future interdependent networks: from intelligent infrastructures to smart cities. Sustainable Interdependent Networks. Springer, Cham, 2018; 1-10. [DOI:10.1007/978-3-319-74412-4_1]
9. Amini MH. A panorama of interdependent power systems and electrified transportation networks. Sustainable Interdependent Networks II. Springer, Cham, 2019; 23-41. [DOI:10.1007/978-3-319-98923-5_2]
10. Amini MH, Karabasoglu O. Optimal operation of interdependent power systems and electrified transportation networks. Energ. 2018; 11.1: 196. [DOI:10.3390/en11010196]
11. Badii C, Bellini P, Cenni D, Difino A, Nesi P, Paolucci M. Analysis and assessment of a knowledge based smart city architecture providing service APIs. Future Generat. Comput. Syst. 2017; 75: 14-29. [DOI:10.1016/j.future.2017.05.001]
12. Wenge R, Zhang X, Dave C, Chao L, Hao S. Smart city architecture: a technology guide for implementation and design challenges. China Comm. 2014; 11(3). [DOI:10.1109/CC.2014.6825259]
13. Al-Hader M, Rodzi A, Sharif AR, Ahmad N. Smart city components architecture. International Conference on Computational Intelligence, Modelling and Simulation, 7-9 Sept. 2009, Brno, Czech Republic, Czech Republic. [DOI:10.1109/CSSim.2009.34]
14. Anthopoulos L, Fitsilis P. From digital to ubiquitous cities: Defining a common architecture for urban development. 6th International Conference on Intelligent Environments. June 19-21. Kuala Lumpur, Malaysia. 2010; 301-306. [DOI:10.1109/IE.2010.61]
15. Krylovskiy A, Jahn M, Patti E. Designing a smart city internet of things platform with microservice architecture. In Future Internet of Things and Cloud (FiCloud), 2015 3rd International Conference. IEEE. 2015; 25-30. [DOI:10.1109/FiCloud.2015.55]
16. Liu X, Wang X, Wright G, Cheng JC, Li X, Liu R. A state-of-the-art review on the integration of building information modeling (BIM) and geographic information system (GIS). ISPRS Int J Geo-Inform. 2017; 6(2): 53. [DOI:10.3390/ijgi6020053]
17. Tan Yi, et al. A BIM-based framework for lift planning in topsides disassembly of offshore oil and gas platforms. Autom Construct. 2017; 79: 19-30. [DOI:10.1016/j.autcon.2017.02.008]
18. Soto JÁC, Werner-Kytölä O, Jahn M, Pullmann J, Bonino D, Pastrone C, Spirito M. Towards a federation of smart city services. In Proceeding of International Conference on Recent Advances in Computer Systems. 2016.
19. Lohan ES, Kauppinen T, Debnath SBC. A survey of people movement analytics studies in the context of smart cities. In Open Innovations Association (FRUCT), 2016 19th Conference. IEEE. 2016; 151-158. [DOI:10.23919/FRUCT.2016.7892195]
20. Volk R, Stengel J, Schultmann F. Building information modeling (BIM) for existing buildings: Literature review and future needs. Autom Construct. 2014; 38: 109-127. [DOI:10.1016/j.autcon.2013.10.023]
21. Zdraveski V, Mishev K, Trajanov D, Kocarev L. ISO-standardized smart city platform architecture and dashboard. IEEE Pervasive Computing, 2017; 16(2): 35-43. [DOI:10.1109/MPRV.2017.31]
22. Zhang K, Ni J, Yang K, Liang X, JuRen, Xuemin (Sherman) S. Security and privacy in smart city applications: Challenges and solutions. IEEE Comm Mag. 2017. [DOI:10.1109/MCOM.2017.1600267CM]
23. Zanella A, Bui N, Castellani A, Vangelista L, Zorzi M. Internet of things for smart cities. IEEE Internet Thing J. 2014; 1(1): 22--32. [DOI:10.1109/JIOT.2014.2306328]
24. Giffinger R, Fertner C, Kramar H, Kalasek R, Pichler-Milanovic N, Meijers E. Smart cities - Ranking of European medium-sized cities. Final Report, Vienna. 2007; http://www.smart-cities.eu/download/smart_cities_final_report.pdf
25. Pramod TC, et al. Key pre-distribution scheme with join leave support for SCADA systems. Int J Crit Infrastruct Protect. 2019; 24: 111-125. [DOI:10.1016/j.ijcip.2018.10.011]
26. Shekari M, Arasteh H, Fini AS, Vahidinasab V. Demand response requirements from the cultural, social, and behavioral perspectives. Appl Sci. 2021; 11(23): 1-23. [DOI:10.3390/app112311456]
27. Arasteh H, Moslemi N, Hashemi SM. Demand response measurement and verification approaches: analyses and guidelines. Publisher: IET, Book title: Industrial Demand Response: Methods, Best practices, Case Studies, and Applications. 2022. [DOI:10.1049/PBPO215E_ch7]
28. Amini MH, Talari S, Arasteh H, Mahmoudi N, Kazemi M, Abdollahi A, et al. Demand response in future power networks: Panorama and state-of-the-art. In Sustainable Interdependent Networks II, Springer, 2019; 167-191. [DOI:10.1007/978-3-319-98923-5_10]
29. Arasteh H, Bahramara S, Kaheh Z, Hashemi SM, Vahidinasab V, Siano P, Sepasian MS. A system-of-systems planning platform for enabling flexibility provision at distribution level. Publisher: Taylor & Francis, Book title: Flexibility in Electric Power Distribution Networks, Chapter: 3, 2021; 41-65. doi: 10.1201/9781003122326-3, ISBN: 9781003122326 [DOI:10.1201/9781003122326-3]
30. Arasteh H, Sepasian MS, Vahidinasab V, Aghaei J. Stochastic system of systems architecture for adaptive expansion of smart distribution grids. IEEE Transact Indust Inform. 2019; 15(1): 377-389. [DOI:10.1109/TII.2018.2808268]
31. Arasteh H, Sepasian MS, Vahidinasab V. An aggregated model for coordinated planning and reconfiguration of electric distribution networks. Energ. 2016; 94: 786-798. [DOI:10.1016/j.energy.2015.11.053]
32. Bahrami S, et al. A decentralized renewable generation management and demand response in power distribution networks. IEEE Transact Sustain Eneg. 2018; 9.4: 1783-1797. [DOI:10.1109/TSTE.2018.2815502]
33. Kia M, Shafiekhani M, Arasteh H, Hashemi SM, Shafie-Khah M, Catalão JPS. Short-term operation of microgrids with thermal and electrical loads under different uncertainties using Information Gap Decision Theory. Energ. 2020; 208. doi: [DOI:10.1016/j.energy.2020.118418]
34. Arasteh HR, et al. Integrating commercial demand response resources with unit commitment. Int J Elect Power Energ Syst. 2013; 51: 153-161. [DOI:10.1016/j.ijepes.2013.02.015]
35. Arasteh H, Sepasian MS, Vahidinasab V, Siano P. SoS-Based multiobjective distribution system expansion planning. Elect Power Syst Res (EPSR), 2016; 141: 392-406. [DOI:10.1016/j.epsr.2016.08.016]
36. Yu B, Sun F, Chen C, Fu G, Hu L. Power demand response in the context of smart home application. Energ. 2022; 240: 122774. [DOI:10.1016/j.energy.2021.122774]
37. Arasteh HR, Moghaddam MP, Sheikh-El-Eslami MK. Bidding strategy in demand response exchange market. 2nd Iranian Conference on Smart Grid, Tehran, Iran, 2012; 23-24.
38. Kim JH, Shcherbakova A. Common failures of demand response. Energ. 2011; 36: 873-80. [DOI:10.1016/j.energy.2010.12.027]
39. Negnevitsky M, Nguyen TD, de Groot M. An agent-based market clearing scheme for the exchange of demand response. Power Energ Soc Gen Meet IEEE, 2011; 1-6. [DOI:10.1109/PES.2011.6039075]
40. Nguyen DT, Negnevitsky M, Groot MD. Pool-based demand response exchange-concept and modeling. IEEE Trans Power Syst. 2011; 26: 1677-1685. [DOI:10.1109/TPWRS.2010.2095890]
41. Nguyen DT, Negnevitsky M, Groot MD. Walrasian market clearing for demand response exchange. IEEE Trans Power Syst. 27; 535-544. [DOI:10.1109/TPWRS.2011.2161497]
42. Bompard E, Ma Y, Napoli R, Abrate G. The demand elasticity impacts on the strategic bidding behavior of the electricity producers. IEEE Transact Power Syst. 2007; 22(1): 188-197. [DOI:10.1109/TPWRS.2006.889134]
43. Goel L, Wu Q, Wang P. Reliability enhancement and nodal price volatility reduction of restructured power systems with stochastic demand side load shift. IEEE Power Eng Soc Gen Meet Conf. 2007; 1-8. [DOI:10.1109/PES.2007.385602]
44. Yu N, Yu JL. Optimal TOU decision considering demand response model. Int Conf Power Syst Tech. 2006; 1-5. [DOI:10.1109/ICPST.2006.321461]
45. Goel L, Qiuwei W, Peng W. Reliability enhancement of a deregulated power system considering demand response. IEEE Power Eng Soc Gen Meet Conf. 2006; 1-6. [DOI:10.1109/PES.2006.1708965]
46. Su CL, Kirschen D. Quantifying the effect of demand response on electricity markets. IEEE Transact Power Syst. 2009; 24(3): 1199-1207. [DOI:10.1109/TPWRS.2009.2023259]
47. Schweppe FC, Caramanis MC, Tabors RD, Bohn RE. Spot pricing of electricity. Berlin: Springer Science & Business Media. 2013.
48. Conejo AJ, Morales M, Baringo L. Real-time demand response model. IEEE Transact Smart Grid, 2010; 1(3): 236-242. [DOI:10.1109/TSG.2010.2078843]
49. Amini MH, Frye Marija J, Ilić D, Karabasoglu O. Smart residential energy scheduling utilizing two stage mixed integer linear programming. In 2015 North American Power Symposium (NAPS), IEEE. 2015; 1-6. [DOI:10.1109/NAPS.2015.7335100]
50. Amini MH, Nabi B, Moghaddam MP, Mortazavi SA. Evaluating the effect of demand response programs and fuel cost on PHEV owners behavior, a mathematical approach. In Smart Grids (ICSG), 2nd Iranian conference on IEEE, 2012; 1-6.
51. Aghapour R, Sepasian MS, Arasteh H, Vahidinasab V, Catalão JPS. Probabilistic planning of electric vehicle charging stations in an integrated electricity/transport system. Elect Power Syst Res. (EPSR), 2020; 189: 106698. [DOI:10.1016/j.epsr.2020.106698]
52. Arasteh HR, Moghaddam MP, Sheikh-El-Eslami MK. A comprehensive framework for retailer's financial policy. J Elect Syst Signal (ESS), 2013; 1(1): 7-18.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.