Volume 3, Issue 3 (7-2021)                   sjis 2021, 3(3): 1-13 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kalantari M. Optimal Design and Scheduling of Active Distribution Network with Penetration of PV/Wind/BESS Energy Systems Considering the Load Side Management. sjis 2021; 3 (3) :1-13
URL: http://sjis.srpub.org/article-5-130-en.html
Department of Power Electric, Ardabil Branch, Islamic Azad University, Ardabil, Iran
Abstract:   (931 Views)
Increasing the penetration of renewable energy sources (RES) in energy systems has had an impressive impact on the design and scheduling of future energy networks and the transition from traditional networks. Sizing and placement of these resources has important technical and economic impacts on the network. However, utilization of these resources in Active Distribution Network (ADN) has several advantages and so, the undesirable effects of these resources on ADN need to be investigated and improved. In this paper, a hybrid ADN includes wind/ PV/ESS, which has been located in 33 IEEE standard bus, is investigated. Optimal energy management and sizing of the RES and ESS are the purposes. Demand Response (DR) is another good option in active networks for regulating production and demand. In this paper, an incentive-based DR program is used. However, this method has uncertainty because it is dependent on customer consumption patterns and the use of inappropriate incentives will not be able to stimulate customers to reduce their consumption at peak times. The optimization problem, which is formulated as optimal programming, is solved to calculate size and placement of each RES as well as ESS condition considering with power losses, voltage profile and cost optimization. The results show the effectiveness of energy management and cost reduction in the studied grid.
Full-Text [PDF 1030 kb]   (415 Downloads)    
Type of Study: Research | Subject: Energy Engineering and Power Technology
Received: 2021/04/15 | Revised: 2021/05/24 | Accepted: 2021/06/30 | Published: 2021/07/30

References
1. Babacan O, Torre W, Kleissl J. Siting and sizing of distributed energy storage to mitigate voltage impact by solar PV in distribution systems. Solar Energ. 2017; 146: 199-208. [DOI:10.1016/j.solener.2017.02.047]
2. Junaid Khana M, Kumar Yadavb A, Mathew L. Techno economic feasibility analysis of different combinations of PV-WindDiesel-Battery hybrid system for telecommunication applications in different cities of Punjab, India. Renew Sustain Energ Rev. 2017; 76: 577-607. [DOI:10.1016/j.rser.2017.03.076]
3. Choton K. Das, Octavian Bass, Ganesh Kothapalli, Thair S. Mahmoud, Daryoush Habibi. Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality. Renew. Sustain Energ Rev. 2018; 91: 1205-1230. [DOI:10.1016/j.rser.2018.03.068]
4. Jalali A, Aldeen M. Risk-based stochastic allocation of ESS to ensure voltage stability margin for distribution systems. IEEE Trans Power Syst. 2019; 34(2):1264-1277. [DOI:10.1109/TPWRS.2018.2873774]
5. Choton K. Das, Octavian Bass, Ganesh Kothapalli, Thair S. Mahmoud, Daryoush Habibi. Optimal placement of distributed energy storage systems in distribution networks using artificial bee colony algorithm. Appl Energ. 2018; 232: 212-228. [DOI:10.1016/j.apenergy.2018.07.100]
6. Tsikalakis A, Hatzargyriou N. Centralized control for optimizing microgrids operation. IEEE Trans Energ Convers. 2008; 23(1): 241-248. [DOI:10.1109/TEC.2007.914686]
7. Hoke A, Brissette A, Chandler S, Pratt A, Maksimovic D. Lookahead economic dispatch of microgrids with energy storage, using linear programming. IEEE Conf Technol Sustain. 2013. [DOI:10.1109/SusTech.2013.6617313]
8. Lively M. Creating a MicroGrid market: using a frequency driven pricing curve to dispatch load and embedded distributed generation and to charge and pay for participation. Energ Centr. 2013.
9. Ali Ehsana, Qiang Yang. State-of-the-art techniques for modelling of uncertainties in active distribution network planning: A review. Appl Energ. 2019; 239: 1509-1523. [DOI:10.1016/j.apenergy.2019.01.211]
10. Mohammad Rasol Jannesar, Alireza Sedighi, Mehdi Savaghebi, Josep M. Guerrero. Optimal placement, sizing, and daily charge/discharge of battery energy storage in low voltage distribution network with high photovoltaic penetration. Appl Energ. 2018; 226: 957-966. [DOI:10.1016/j.apenergy.2018.06.036]
11. Hossein Fallahzadeh-Abarghouei, Saeed Hasanvand, Ahmad Nikoobakht, Meysam Doostizadeh. Decentralized and hierarchical voltage management of renewable energy resources in distribution smart grid. Int J Elect Power Energ Syst. 2018; 100: 117-128. [DOI:10.1016/j.ijepes.2018.02.006]
12. Hatziargyriou ND, Dimeas AL, Tsikalakis AG, Pecas Lopes JA, Kariniotakis G, Oyarzabal J. Management of MicroGrids in market environment. IEEE Int Conf Fut Power Syst. 2005. [DOI:10.1109/FPS.2005.204225]
13. Georgios C. Kryonidis, Charis S. Demoulias, Grigoris K. Papagiannis. A new voltage control scheme for active medium-voltage (MV) networks. Elect Power Syst Res. 2019; 169: 53-64. [DOI:10.1016/j.epsr.2018.12.014]
14. Yasmeen A, Javaid N, Zahoor S, Iftikhar H. Optimal energy management in microgrids using meta- heuristic technique. Int Conf Emerg Internet Data Web Technol. Adv Internet Data Web Technol. 2018; 303-314. [DOI:10.1007/978-3-319-75928-9_27]
15. José Iriaa, Miguel Heleno, Gonçalo Cardoso. Optimal sizing and placement of energy storage systems and on-load tap changer transformers in distribution networks. Appl Energ. 2019; 250: 1147-1157. [DOI:10.1016/j.apenergy.2019.04.120]
16. Ling Ai Wonga, Vigna K. Ramachandaramurthy, Phil Taylora, JB Ekanayaked, Sara L. Walker, Sanjeevikumar Padmanabane, Review on the optimal placement, sizing and control of an energy storage system in the distribution network. J Energ Stor. 2019; 21: 489-504. [DOI:10.1016/j.est.2018.12.015]
17. Sajad Mahdavi, Reza Hemmati, Mehdi Ahmadi Jirdehi. Two-level planning for coordination of energy storage systems and wind-solardiesel units in active distribution network. Energ. 2018; 151: 954-965. [DOI:10.1016/j.energy.2018.03.123]
18. Shu Wang, Fengji Luo, ZhaoYang Donga, Gianluca Ranzi. Joint planning of active distribution networks considering renewable power uncertainty. Int J Electr Power Energ Syst. 2019; 110: 696-704. [DOI:10.1016/j.ijepes.2019.03.034]
19. Plecas M, Xu H, Kockar I. Integration of energy storage to improve utilization of distribution networks with active network management shemes. CIRED, Open Access Proc J. 2017; 1: 1845-1848. [DOI:10.1049/oap-cired.2017.1090]
20. Yongxi Zhang, Shuyun Ren, Zhao Yang Dong, Yan Xu, Ke Meng, Yu Zheng. Optimal placement of battery energy storage in distribution networks considering conservation voltage reduction and stochastic load composition. IET Gener Transm Distrib. 2017; 11(15): 3862-3870. [DOI:10.1049/iet-gtd.2017.0508]
21. Maleki A, Askarzadeh A. Optimal sizing of a PV/wind/diesel system with battery storage for electrification to an off-grid remote region: A case study of Rafsanjan, Iran. Sustain Energ Technol Assess. 2014; 7: 147-153. [DOI:10.1016/j.seta.2014.04.005]
22. Jijian Liana, Yusheng Zhanga, Chao Maa, Yang Yanga, Evance Chaima. A review on recent sizing methodologies of hybrid renewable energy systems. Energ Convers Manag. 2019; 199. [DOI:10.1016/j.enconman.2019.112027]
23. Kumar M, Nallagownden P, Elamvazuth I. Optimal placement and sizing of renewable distributed generations and capacitor banks into radial distribution systems. Energ. 2017; 10: 1-25. [DOI:10.3390/en10060811]
24. Davide Fioriti, Davide Poli. A novel stochastic method to dispatch microgrids using Monte Carlo scenarios. Electr Power Syst Res. 2019; 175. [DOI:10.1016/j.epsr.2019.105896]
25. Mohsin M, Rao KVS. Estimation of weibull distribution parameters and wind power density for wind farm site at Akal at Jaisalmer in Rajasthan. International Innovative Applications of Computational Intelligence on Power, Energy and Controls with their Impact on Humanity (CIPECH), 2018; 14-19. [DOI:10.1109/CIPECH.2018.8724170] [PMID] [PMCID]
26. Chauhan A, Saini RP. Statistical analysis of wind speed data using Weibull distribution parameters. Int Conf Non-Convent Energ. (ICONCE 2014), 2014; 160-163. [DOI:10.1109/ICONCE.2014.6808712]
27. Sheng W, Ke-Yan Liu, Liu Y, Meng X, Li Y. Optimal placement and sizing of distributed generation via an improved nondominated sorting genetic algorithm II. IEEE Trans Power Deliv. 2015; 30(2): 569-578. [DOI:10.1109/TPWRD.2014.2325938]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.