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kernel-scalar matrix method. Then, by analyzing the L, interest rate, the control law
is obtained for moving independently of the initial conditions. The advantages of
the proposed modeling are maximizing the delay limit for the stability of the entire
maneuver time, calculating the control rule at the start of the maneuver and high
flexibility in applying the travel restrictions. The efficiency of the method presented
by simulation with scalar kernel matrix method with control methods of delayed
systems with distributed delay is shown and compared by recent references.
Performance is also evaluated in different scenarios and its reliability is checked.
This method is also used in the practical problem of tracking a surface vessel by
submarine.

Keywords: Exponential stability, L, interest rate analysis, Infinite distributed delay,
Scalar kernel, Side tracking alone

Introduction

Target tracking In situations where there is a limit to
measuring target parameters with active sensors, it is
done only by measuring the angle of the target by
inactive sensors, which is called BOT Bearings-Only
Tracking. It has many special applications in military and
commercial industries [1]. The BOT problem is
categorized according to the number and position of the
senses, the number of targets, and the motion
dimensions of the targets. In many practical problems,
the initial position and condition of the target is also
unknown in the BOT problem [2]. Also, pursuit with the
least maneuver due to the limitations and obstacles of
the obsetvet's movement path, is one of the basic
requirements of this special practical issue in practice.
High maneuverability produces acoustic noise and
greater observer visibility [3]. In recent decades, the issue
of BOT and TMA Target Motion Analysis has been a

topic of interest for researchers [4]. This has been used
for acoustic issues (submarines with passive sonar),
electromagnetic equipment (ESM sensors), and optical
equipment (for satellites and infrared cameras). Much
research has been done on various types of BOT issues,
which can be referred to the important books on this
subject in references [5-7].

The standard version of side motion analysis (BOTMA)
consists of two animations on a two-dimensional surface
in which the observer (pursuer) and the target move at a
quasi-linear velocity at a constant speed and direction
during tracking time. Thus, the meaning of classical
BOTMA is the calculation of four parameters, including
the two coordinates of geographical position, speed and
course of movement (target), which is done by collecting
and measuring the target side by the observer of the
observer [8]. Under this classical assumption, if the
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velocity vector is constant, the observer cannot identify
the target and therefore the problem is not stable. In the
last decade, the effect of maneuvering on increasing
target stability in BOT has been discussed. When
stability is definite, due to the combination of side
measurement with error, BOT accuracy is highly
dependent on maneuver [9]. Reference [10] shows that
maximizing the delay limit of the BOT problem is
achieved by the interaction of two reciprocal conditions,
one is the reduction of the distance from the observer to
the target and the other is the orthogonal motion of the
observer on the target line of view. In some cases,
researchers have used approximate s-track maneuvers to
meet the stability requirement of these delayed
distributed systems with extra-delayed delay, but this, in
addition to generating acoustic noise, incurs additional
path costs [11].

The main tasks of maneuver control are done to position
the target (stationary target). In the reference [12], the
movement of the carrier on the two straight paths of the
line has been investigated and the effect of the
movement path has been compared. Assuming a fixed
course in the first step of the route, the delay rate course
is calculated in the second step of the route in order to
maximize the accuracy of calculating the target distance
by increasing the L, gain. In the reference [13], for a
positioning problem, by defining the Lyapunov function
of the proximity constraint, the problem of standard
kernel matrices for the BOT problem is presented. In
[14], wusing change calculation methods (indirect
methods), the closed-loop system for optimal maneuver
(dependent on the input parameter of the coefficient of
approximation) in the positioning problem (static target)
has been studied. In recent references, the necessity of
establishing these two reciprocal conditions has defined
the path of the observer in applied problems as a spiral
(Figure s). The importance of this method, in addition
to the simplicity of online calculations, is that the
calculations do not depend on the uncertainty of the
initial conditions. The cost function of this method by
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L, gain is the long and undesirable path of the observer
maneuver, the possibility of instability in some directions
of movement such as the target, and the non-
optimization of the motor end time relative to the
maneuver mud [15]. The minimal trajectory of the
observer in the direction of approaching the target, in
addition to improving the condition of the infinitely
distributed delay limit in the far-reaching scenarios of the
target, causes an accurate estimate of the end time of the
maneuver. As a comprehensive example of the indirect
solution method, in the reference [16], by forming a
Hamiltonian boundary value (HBVP) problem and
using the theory of variance calculus, a relationship
between the direction of the observer and the angle of
the target in the optimal path is presented. Is. The
difficulty of presenting the final boundary conditions
and knowing the initial position is one of the limitations
of this method. On the other hand, methods that have
examined the timing of maneuvers recommend
approaching the target at the beginning of the route and
bypassing the target at the end of the route [17].
Compared to existing studies, this is the main
contribution of this article. In the second part, the
definitions and modeling of the BOT problem are
stated. In the third step, the exponential stability of
distributed delayed systems with infinite delay and L,
gain analysis by standard kernel matrices in the form of
Lyapunov function and LMI extraction is described. In
the fourth section, in fact, the simulation of the article is
presented, and finally, to show the correctness of the
theoretical results and the effectiveness of the
algorithms, in the fifth section and the final section of
the article, the general results of the article are stated.

Definitions and Modeling of the BOT Problem

Figure 1 shows the two-dimensional geometry of the
BOT problem [18]. The variables used in the article
according to Figure 1 are:

target

observer

[
'

X

Figure 1. Two-dimensional geometry of the BOT problem [18]
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General Problem BOT Estimation of the path of the
target (speed and position of the target) is defined by
measuring the sensitive data on the maneuverable side
while maneuvering (sensitive carrier). Next, the
Cartesian coordinate system is used to mathematically
define the BOT problem in the target mode with
constant speed and direction (without maneuver).
Therefore, objective modeling and BOT interception
problem equations with nonlinear measurement
function of BOT problem at t moment are defined as
the following relations [19].

The target state vector is defined by the linear velocity
Vand the initial vector V¢ by equations (1) and (2).

t — [yt bt ot ot]T
X = [Xp, Vi Xpr Vi) )
0 _ [,0 1,0 20 +01T
Xk = [XK, Vi Xi» Vi ] 2)
As a result, the relative motion vector of the target is
obtained as (3).

Xk = xzi - xl(c) = [Xk'J’k,ffk'}"k]T (©)

The dynamic equations of the target state space, at a
constant speed, assuming the acceleration is unknown
and applying it to the model as Gaussian independent
noise (4) are as follows.

Wy = [WXk’W.Vk]T = [, Jie]” @)

The mode transition matrix of the model is equal to F
and the vector U is accurately measured with the
navigation sensations by Equation (5).

T2 5
10T 0 5 0 ©
01 0 T T2
Fk=fo(xk)|xk=2k_l= 00 1 0 ,Ge =0 P’y
000 1 r o
o o 0 'GT
Ug1 Xig = Xg—y — T4 (6)
U _ k2| _ YR = Yi-1— TVi-1
koLk Ups X — X1
Upq Vi = V-1

Also, the nonlinear equations of the measurement vector
with the mean of zero and the unknown initial values of
the BOT problem are (7).

Xo =19 - sin(zp) 70 = +/ xé + yg Y

Yo =g - cos (Z)

It is noteworthy that the nonlinear equations of
measurement of the target side are considered as (8).

z = h(Xp) + v = i + v ®)
h(Xy) =tan™?! (i)

x =1 -sin (2)
y=r-cos(2)

=Ty

Exponential stability and interest analysis of L,
system

The aim is to find characteristics to prove the
exponential stability and L, interest rate analysis of the
system, which in this article deals with integral kernels.
Consider system (9).

X(t) = Ax(t) + Aq [, K@x(t—-0-1do O

Assume that the kernel satisfies (10) and is A or Ag
Hertz.

Ay=A+A4q [, K(6)do 10y

To analyze the exponential stability of a high system with
a convergence rate 8 <5_0, the Lyapunov function (11)
is proposed.

V(&) = Va(t) + V() + Vy(6), Va(t) = xT(O)Px(t)  (11)
Vo) = [ [,_. e CINK()|xT (s)Gx(s)dsdl

Ve = [ f(f’” ff_a e20(t=9) | K(0) | %7 (s)Hx(s)dsdAd6

Where the matrices P, G and H are fixed and positive.
The sentence Vg (t) with 8 # 0 develops the classical
result for the exponential stability mode with & rate.
Also, if A is Hertz, this sentence compensates for the
effect of the delayed sentence in the above system.
Similatly, the sentence Vu (t) extends the result to the
exponential stability mode with 8 rate, and if Ag is Hertz,
it compensates for the integral sentence in system (9). Of
course, this sentence can also improve the results for a
case where A is Hertz. Since the Lyapunov function is
dependent on x., The primary function must be
derivative.

In the following, conditions are extracted that satisfy the
inequality (12) in order for the system to respond to the
initial conditions (13).

V(t) +26V(t) <0 (12)
¢ € C'(—,0] (13)

In this case, the stability of the system is guaranteed.
Therefore, the system response must have condition

(14).

xT(®)Px(t) < V(t) 14)
< e 28ty (0),t =0

Where for all € (0, 8o) thete is a relation (15).
V(0) < Amax(P)B(O)* + Anax () J;” 1K (6)1(0 +7)d6 (15)
Fmax (H) [} K@) C2d6 1 I

Derived from V in the direction of the relational system
(16) is obtained.
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V(t) +28V(t) = 2x"(OP[Ax(D) + Aq [;” K(O)x(t—6—1 (10
26xT(t)Px(t)
+ [ [K(0)]dox" (£)Gx(t) —
Jo. e K@) |x (t — 6 —1)Gx(t — 6 — 7)db
+ 77 (0 +D)|K(6)|doxT () Hx (L) —
I, e O IK(9)x7 (s)H(s)dsdo
Assume that definitions (17) and (18) are considered.

* 1
K0(5 — f 625(9+T)|K(0)|d0,1(00 an
0

= Kosls=o»

@ 18
Kis = f e20@+D|K(8)(6 + 1)d6, K o
0

= Kisls=o
Now, using the Jensen integral inequalities [20],
equations (19) and (20) are obtained.
— [? e=28@+D K (0)[xT(t — 6 — T)Gx(t — 6 — T)dO < 19
—Koi J, K(O)x"(t— 0 —1)doG [° K(0)x(t — 6 — )¢

[E . e 20K (9)|T (s)Hi(s)dsdO < 20
L Lt KO (s)dsdoH [7 [*,  K(6)%(s)dsdd

With variable definition (21):
n(t) = col {x(0), f,” K(®)x(t— 6 —1)do} @D

A relation (22) can be obtained.

. ro [Poo PAg+ Kl}}KOOH] @2)
vy +asvey st Tt o e
AT1 74T
+K1on" () [AEJ H [Ag] n(t),
That
®gg = PA+ ATP + 28P + KooG — K5 K3 H 23)

LMI (24) is obtained by applying saline supplement [21].
As a result, the LMI obtained in Equation (24) ensures
that Equation (25) is established.

Do PAy + KigKooH K 0ATH Q24)
* _Ko_alG - K1_81H K10A§H <0
* * —KioH
V() +26V <0 @5)

Conclusion: Suppose that certain positive matrices
P,G,H € R"exist such that LMI (24) holds, in which
case system (9) with initial condidons ¢ €
C'(—,0] the exponential stability will be with the
convergence rate d.

A matrix kernel [22] can be considered for system (9).
However, in this case the numerical solution of
constants (260) and (27) is complex.

® (26)
Kos = f e20@*D|K(8)]d6, Koo = Kosls=o0»
0

@ @
K5 = f e20C+D|K(0)](6 + 1)d6, K1p = Kisl5=0
0

For this reason, in proving the exponential stability in
this paper, a special but important case of matrix kernel

STIS, 2023; 5(2): 1-7

is considered in which the matrix kernel is considered as
the sum of scalar kernels. As a result, the system is
considered as (28).

x(t) = Ax(O) + TPy Agi [, Ki(@)x(t—0 —1)do  (28)

If LMI (24) holds for 8 = 0, then system (9) is asymptotic
for K € L1[0,00) if K;o < o0 is the result of the delay
effect distributed here with only a few integral sentences
in the stability conditions. Reflected. Such conditions are
highly conservative because they ignore the details of the
delay distribution. For the kernel mode with gamma
distribution [23] which is discussed below, the kernel
derivative will also be considered to achieve better
results.

A simpler Lyapunov function can be used when the
matrix is A Heroitz. In this case, if the Lyapunov
function (3) H = 0 is applied in V, LMI (29) is obtained.

PA+ATP + 28P + KooG ~ PA4 ] 0 (29)
* -K;3G

As a result, for all system responses with the initial
function ¢ € C(—o0, 0], LMI (29) ensures that relations
(30) and (31) are established with H = 0.

xT(H)Px(t) S V(t) < e 2V (0),t =0 (30)

*° 31
V() € AnaePIBOF + Ine@ [ K@@ + 26
ettt [ @IS0 16 1

It can easily be seen that for 8 = 0 LMI (29) is a sufficient
condition independent of the delay for the system (32)
for r=0.

x(t) = Ax(t) £ KooAgx(t — 1) (32)
The following three items can also be guaranteed:

1) The matrices A and A & K_00 Aq are Hertz (in other
words, for K20 the matrix is Ao Hertz).

2) The eigenvalues of the matrix (33) are inside a single
circle.

A KpoAq = A1 f |K(s)|dsAq
0

33

3) The Scaled Small Gain Theorem [24] (34) is
established.

IGO5(sI — A)™TA4G %5, < 1/Kqo 34)

For 8 = 0, Ag = G =1 and a matrix K, LMI (29) is
equivalent to inequality (35).

I(s1 = A7, < 1/Koo 35

This inequality is extracted in the references for the
limited delay mode. The result can be easily extended to
systems with multiple latency and scalar kernels.
Theorem: Consider the system given in Equation (28).
Suppose there exists a 80> 0 such that the relations (35)
and (306) are established and A is Hertz.
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(sl = A)~Ml,, < 1/Koo (35)

Given 6 € (0,6y) (5 = 0), assume that the definite
positive matrices P, G;, H; € R™™are such that LMI
(37) with details (38) Be established.

Dyy Doy .. Dy AT(ITT, KioH)) @37
« Dy . 0 AL(Zm, K{'OHi)

| : : : . <0

l * * * q>mm Adm(z KILOHL')J
* * * * 1= KlioHi

Kis = [, e”w”’lki(e)lde. Kéo = Kisl s (38)

Kis = J,” e*°@IK,(0)1(6 + 1)d6, Kio = Kis|,_,,

gy = PA+ AP +26P + S [KhoG; = (Kis) ™ (Kio)
=1 .o -1 .

Doy = PAg + (Kis)  KioHy @i = —(Kis)  Gi— (Kis

L and ISS interest rate analysis Disturbed systems are
two other simple extensions of the Lyaponov-Krasovsky
method, where the L,_2 interest rate of the system will be
analyzed. Consider the turbulent version of the previous
system by Equation (39).

x(t) = Ax(t) + Ag [, K(®)x(t —0 —1)d6 + Bw(t), (9
2(t) = Cx(t),

Where w(t) € R™ are perturbation vectors, z(t) €
R"z are controlled outputs, and B and C are fixed
matrices. The L, gain of a high system is said to be less
than y> 0 if there is a relation (40) for the initial zero
conditions of the system.

J=J, 2 ®z(t) —y*wT (Ow(D)]dt <0, (0
0+we Lz [0, OO)

For an inequality 3> 0 (40) guarantees that ] <0 and is
therefore an internal exponential stability system.

By standard calculations, we can see that W (t) <0 and
therefore ] <0 hold if LMI (41) holds.

®oo + CTC PA; + KigKyoH PB K ,ATH (41)
* —KgG—KgH 0 K ALH
* * —v%l K,,B"H
* * * —KoH

0,

oo = PA+ ATP + 26P + KooG — Kt K& H
Simulation
Consider the BOT system mentioned in the second part

of the paper with the non-Hurwitz A matrix and the
kernel matrix (42).

x(t) = Ax(0) + [, " K(0)x(t — 6)do “2)
02 0.01 1-— 0 36 01
A= [0 ]K(e)_[ v

Ap=A+ X1 1Ad1f K;(6)dg  (36)

System  (42)  with =2,1=0 K, =K, =
0 for 8 > h can be written as (43) in different ways.

2(8) = Ax(t) + [ K(B)x(t — 6)d6 @3)
02 001 -1-030 0.1
A=[0 —2]'K(9)=[ -0.1

Here, two forms (44) and (45) can be considered for the
mentioned system.

gy = [—01 ] Ay = [03 0] (44)
K1_1K2(9)—906 [0, k]
ta=lo Solae==[p o] @

K, = 1,1(2(9) =1+0.36,0 € [0,h]

Therefore, assuming equation (46) for the general
system:

Ag=A+Y%, Adlf K;(6)do 406)

In this system for h=0.195 the matrix is Ay Hurwitz. In
the reference [25], using an analytical method, the delay
interval for the asymptotic stability of the system h€&
[0.195,1.71] is obtained, while with the LMIs concluded
in this paper with 15 scalar variables, the exponential
stability of the system with the model ( 45) for h€&
[0.207,1.455] and with model (46) for h€ [0.195,1.442].
Thus the system is exponentially stable for h€
[0.195,1.455].

Assuming h = 1, it is observed that they can be solved
by the existing LMIs with 15 decision variables
maximum for the convergence rate Smax = 0.433 with
model (44) and 8max = 0.593 with model (45). Therefore,
the system is exponentially stable with a convergence
rate of 0.593. Also note that the system in this example
has a triangular structure. It is therefore stable if the two
scalar systems (47) and (48) are stable.

2 (6) = 02x,(1) — [0, (1= 038)x,(t +5)ds 47
() = —2x,(t) = 0.1 [°, x,(t + 5)ds (48)

Corresponding to models (47) and (48), the model for x;
can be expressed as a system with two delays as (49).

Agy =—1=-K;(0) and “49)
Ag, = —03,K,(0) =6

Or model with a system with only one delay as (50).

Az = —1and K(0) (50)
=1+0.36(0 € [0,h])
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The LMIs obtained in this paper with 5 and 3 scalar
variables ensure the exponential stability of the system
for h€ [0.207,1.455] and h€& [0.195,1.442], respectively.
Consider the BOT system mentioned in the second
section with parameters (51).

A=08A4;=-418B=2C=1 1)
K(@)=0for0>h

3+2060+70062
,K(B) —m forB € [O,h]

In this system for h> 0.011659 we have Ay <0. For h =
0.1, the minimum value of L2 of the system in the
reference [26] is calculated to be 0.76, while using the
LMI obtained in this paper, the lowest value of L2 of the
system is 0.3223.

Now if we consider the same system with infinite delay
and assume that the scalar kernel K € L, [0, o) is given
with relation (52).

3+200+70062
2-200+80062

(52)

K(6) = e~1% 51 6 € [0,0)

In this case, by solving the obtained LMI, the minimum
value of L of the system is equal t0 ymian = 0.41.

Conclusion

In this paper, using the simulation method by Lyapunov
function, it is shown that the proposed method of scalar
kernel matrix for designing the optimal path of BOT
problem can be calculated with a unique control
function independent of the initial unknown parameters.
Movable was evaluated by maneuver. Utilizing high
accuracy of control methods of delayed systems with
infinitely distributed delays in initial modeling with
utilization of stabilization methods and I, gain analysis
due to high stability to unknown parameters and
increasing the solution speed to solve the complexity of
the solution is the main feature of this method. Another
advantage of designing a route with the desired pursuit
and approach is at the beginning of the maneuver. In
addition, high convergence, speed and low
computational volume (compared to other methods)
were shown in BOT application problems. Although
convergence time can be calculated in error-free
measurement  mode,  despite  the  significant
measurement error, the minimum time in this study has
been calculated from simulation. Future research in this
area includes calculating the optimal time for the desired
convergence commensurate with the sensitive
measurement error to ensure the online convergence of
the BOT problem. Also, the study of the performance
of the proposed method for maneuverable targets and
finding quick adaptive criteria appropriate to the
functions of sustainability criteria for the convergence of
maneuverable target estimators is considered in further
research.
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