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ABSTRACT

The unit commitment (UC) problem has always been considered as one of the main
activities by the system planners. Due to the non-linear and complex nature of the
UC, different optimization approaches have been presented to solve the problem.
In recent years, metaheuristic algorithms have been attracted because of their
efficiency to optimize complex problems. This paper combines the concepts of two
algorithms, i.e., the particle swarm optimization (PSO) and genetic algorithm (GA)
in a paralle]l manner and proposes a mixed GA-PSO method to optimize the UC
problem. The simulation results have justified the effectiveness and advantages of
the proposed method, compared to the individual methods.

Keywords: Parallel optimization, Unit commitment, Particle swarm optimization,
Genetic algorithm

Introduction

The power generation problem has been focused with
several studies due to the increasing load demand all
over the world. Increasing the penetration level of
different kinds of appliances, transportation facilities
and industrialization are the main reasons of these
electrifications. Providing the required electricity
demand in an economic manner is one of the challenges
of the planners. Unit commitment (UC) is an
optimization problem for the operation of the power
systems. The unit commitment is a problem to optimally
determine the on/off status of the generation units, as
well as their corresponding production. The aim of the
UC is to provide the forecasted load of the system in the
specific horizon time with the most economic manner,
while all the constraints and system requirements have
been overcome [1-4].

Since the UC problems are mixed integer NP-hard,
many researches have been done in order to optimize
these complex optimization problems. Barani et al. [5]
improved the binary quantum-inspired gravitational
search technique and introduced a novel method for
solving the UC. Ref. [6] solved the UC by considering
the penetration of wind generation. Abujarad et al. [7]
provided a survey on the UC in the presence of

renewable generation units. Different UC models and
the presented methods to solve the problem is studies in
his paper.

In [8] three methods have been utilized to solve a large
scale UC problem that includes charged search system,
PSO, and ant colony search.

Several approaches have been presented in order to
optimize the UC problem, including [5]:

- Deterministic approaches (such as priority list [9],
dynamic programming [10, 11], Lagrangian relaxation
[12, 13] and the branch-and-bound method [14]);
- Intelligent approaches (e.g. GA, PSO, simulated
annealing [15, 16], quantum inspired evolutionary
algorithm [17] and artificial neural networks [18]).

Migjalili et al. [19] have been introduced GWO (grey
wolf optimizer) method by inspiring from the behavior
of grey wolves. Afterward, the integrated GWO and
PSO is utilized for solving the large-scale UC problems
[20]. Panwar et al. [21] have solved a complex UC
problem by using the Binary grey wolf optimization
(GWO).

One of the important aspects of power systems that
should be considered in unit committment is the
stochastic nature of electricity demand and electric
vehicles charging load. Amini et al. [22] proposed a
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chance-constrained  solution  that models the
probabilistic nature of load demand. Their proposed
approach decoupled the electric vehicle charging
demand and the conventional load demand to exploit
the different patterns and increase the accuracy of
estimated load.

Although metaheuristic methods cannot guarantee the
optimality of their solutions, due to the complex nature
of the UC, these algorithms have been used widely to
solve the problem. Indeed, since UC is a large-scale,
non-linear (due to the non-linear cost terms and
constraints), mixed-integer and non-convex problem
(due to the presence of binary variables in order to
determine the on/off decisions), generally the
deterministic methods are not efficient to solve it [23,
24]. These limitations have encouraged researchers to
utilize metaheuristic approaches [7, 25-27].

This paper combines the concepts of PSO and GA in a
parallel manner to optimize the UC problem. In fact, the
power of PSO and GA to lead the optimization
procedure towards the optimum point, as well as their
ability to move from the local optimum points to the
global solution have been combined with each other to
propose a more powerful optimization method.

At the following, the formulations of the UC problem,
consisting the objective function and the relevant
constraints of the problem is presented. Moreover, the
proposed parallel GA-PSO algorithm will be introduced.
The numerical analysis section will be provided in order
to illustrate the effectiveness and advantages of the
parallel GA-PSO. Finally, the concluding remarks have
been derived.

Problem Description

a. Obyjective function

The objective function of the UC has the following cost
terms [28]:

e The fuel costs of generating units;
e The start-up costs of the committed units (including
hot and cold start-up costs);

o Shut-down costs of decommitted units.

Therefore, it can be formulated by (1).
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where, o, , B, and y; are fuel cost coefficients of unit ;.

The start-up costs of the generating units are defined as
follows:

HSC., if MDT, <T®<MDT, +CST. _
SUCy, = ! 1e ) ! I ofor jeN, teT

CsC,, if TJ-D >MDT; +CST;

b. Problem constraint

The optimization problem should cope with the
following constraints [28].

o Initial state;

Initial states denote the generation level of a unit, as well
as the time that it has been on/off.

e Power balance restriction;
N
D PLxU, =D, for jeN, teT (4
=

e Allowable generation levels of the units;

0 P
P XU, < PiXUj, < p;.xu
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e Spinning reserve;

N
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¢ Ramp-up/down constraints of the units;
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e Start up and shut down constraints of the units;

SUI(j,t)+SDI(j,t)<L for jeN, teT  (9)

e Prohibited zone;

The generators may have specific constraints in which
they should not be operated in some operating ranges.
These restrictions are known as prohibited operating
zones. Eq. (10) formulates these constraints. Moreover,
Bese prohibited zones are illustrated in Figure 1.
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Figure 1. Generators’ prohibited zones

e Minimum up/down time limits (MUT/MDT).

MUT, <T?, for jeN  (11)
MDT, <TP, for jeN (12

Optimization Algorithm

The metaheuristic methods have been attracted in recent
years due to their ability to solve the complex problem.
Panwar et al. [22] implemented the binary GWO method
to solve the UC. Subba Reddy et al. [30] used the concept
of GA to optimize the UC problem. Radial movement
optimization (RMO) algorithm is introduced in [31] for
the UC. Yu et al. [32] used a Lagrangian relaxation and
particle swarm optimization method to find the optimal
solution of the UC. In [33], binary successive method
and civilized swarm optimization (CSO) approaches are
integrated with the aim of solving the UC. A PSO-based
method is used in [34] to find the optimum solution of
the UC. Kumar et al. [35] used the GA to solve the
security constrained UC.

As above-mentioned, the GA and PSO are two
metaheuristic algorithms that have been utilized in many
researches. GA has been introduced at first by Holland
[36] and then is improved by Goldberg [37] and Davis

[38]. Compared to other optimization methods, the GA
has more ability to move from the local optimum points
towards the global solutions.

The PSO is an algorithm that at first introduced by
Eberhart and Kennedy by the inspiration of the social
behavior of bird flocking or fish schooling [39].
Compared to other intelligent approaches, the PSO has
specific advantages (e,g, it is easier for the
implementation,  conceptually is  simpler, and
computationally is more efficient) [40-42].

In this paper, with the aim of using the specific
advantages of the GA and PSO, the parallel GA-PSO
algorithm is used to solve the UC problem. In the
proposed approach, each method is responsible to
continue the optimization procedure towards better
solutions, in the pre-specified iterations. Here, the GA is
used to solve the odd iterations, while the PSO solves
the even iteration numbers. The results that are achieved
by using one of the methods will be considered as the
input to the second algorithm for the next iteration. The
second algorithm will continue the optimization
procedure of the first one. Therefore, the parallel GA-
PSO uses the advantage of both the methods to better
scape from the local optimum points and converge to
better solutions. The procedure of the proposed parallel
GA-PSO method is illustrated in Figure 2.
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Figure 2. The flowchart of the parallel GA-PSO algorithm

Simulation Results

A conventional 10-unit test system [28] is utilized here
to investigate the performance and advantages of the
proposed method. The scheduling time of the UC is
assumed to be 24 hours. All the generation units and
demand data are driven from [28]. However, the system
demand, generators operation data and their cost
cocefficients are provided in Tables 1-3 for the ease of
access.

In order to compare the advantages of GA-PSO, three
different scenarios are considered. The first scenatio
solves the UC problem by using the GA algorithm. In
the second scenario, the problem is optimized by using

the PSO algorithm. Finally, the proposed parallel GA-
PSO method is employed in the third scenario.

Tables 4 and V are provided to illustrate the results of
the UC that are derived by using the GA-PSO. Table 4
compares the results of the GA-PSO and GA
algorithms. The differences in the units’ on/off statuses
are highlighted in this table (the bolded and highlighted
cells in this table indicates the changes between the
results of the GA and GA-PSO). As an example, it is
observed in Table 4 that unit 8 is off as a result of the
GA-PSO, while it was selected to be on by the GA
method. The objective functions of the first and third
scenarios ate 631667.6166 [$] and 609473.0067 [$],
respectively, that shows 22194.6099 [$] cost reduction by
using the GA-PSO (3.51 percent cost reduction).
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Table 1
The demand of the test system
Hour Demand (MW) Hour Demand (MW)
1 700 13 1400
2 750 14 1300
3 850 15 1200
4 950 16 1050
5 1000 17 1000
6 1100 18 1100
7 1150 19 1200
8 1200 20 1400
9 1300 21 1300
10 1400 22 1100
11 1450 23 900
12 1500 24 800
Table 2
Generators’ data
Units P (MW) p,, (MW) MUT (hr) MDT (hr) SC ($) IC (hr)
Unit 01 455 150 8 8 4500 8
Unit_02 455 150 8 8 5000 8
Unit_03 130 20 5 5 550 -5
Unit_04 130 20 5 5 560 -5
Unit_05 162 25 6 6 900 -6
Unit_06 80 20 3 3 170 -3
Unit_07 85 25 3 3 260 -3
Unit 08 55 10 1 1 30 -1
Unit 09 55 10 1 1 30 -1
Unit_10 55 10 1 1 30 -1
Table 3
Generators supply curves’ coefficients
Coefficients Unit 1 Unit 2 Unit 3 Unit 4 Unit 5
a 0.00048  0.00031 0.002 0.00211 0.00398
Yes 16.19 17.26 16.6 16.5 19.7
¥ 1000 970 700 680 450
CoefTicients Unit 6 Unit 7 Unit 8 Unit 9 Unit 10
a 0.00712 0.0079 0.00413 0.00222 0.00173
Yei 22.26 27.74 25.92 2727 27.79
/4 370 480 660 665 670
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Table 4
The comparison results of the GA-PSO and GA
Hour
12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24
Unit
1 1+t 1r1r11r11 111111111 1111111
2 1111111111111 1 1111111111
3091 1vtv v v 111 vr v v 11111111 0000
4 11111 v 11111 11 1000001 I 1 11
s o v v v vt vr1v v 1t 11t 1o 06400001 1 11
6 11 100O0O0OCO0T1TT1T1T1TO0OO0OO0OO0OO0OO0OTI1I 1T 1O0O0O0
7 11111000011 I 1f00O0O0CT1TT1T1T1O000
8§ 00 0 1 1 1 0 1 1T 0 1 0 10 17,01 0 1 1 170 0 0
9 10,0 10 1 0 00 1 1 1 10 1 1 0 170 1 170 1 1
00 1 1 1 1f/0 1070 1 1 1 1 1F06 01 0 1 0f0 1 170 1 0
Morteover, Table 5 compares the results of the GA-PSO units” statuses as the results of the GA-PSO and PSO
and PSO algorithms. The objective functions of the are determined by the bolded and highlighted cells of
second and third scenario are 630210.0148 [$§] and Table 5. For instance, as the result of the GA-PSO, unit
609473.0067 [$], respectively, that shows 20737.0081 [§] 9 is off, while it was determined to be on by using the
cost reduction by implementing the propose method PSO.
(3.29 percent cost reduction). All the differences in the
Table 5
The compatison results of the GA-PSO and PSO
Hour
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Unit
11111111111 111 1 1 1 1 1 1 1 11 11
211111111111 1111111111111
3 011111111116t 1111111 110 000
4 11t 111t 11ttt ¢t 100000 11 1 11
5 61111111t 1111110000 001 1 11
6 11 1 0090001 1 1 T 0O O0O0CO0CO0COC®EI]I I 1 000
7t 1 1 119000 1 1 1T 100001 1 1 1 0 00
8 @00/ 0 1 1 10 1 1 0 1l 0 Lo 1f0 1 0 1 1 L 0 00
9 10 0 1701 0 O[O0/t 1T 1T 1T 0O 1 1 0 170 1 1f01 1
0 11 1 1/ 101 1 1 1 1706 0 1 0 1 0Ff0 1 170 1 0

All the results prove that the parallel GA-PSO method
is more different than other individual algorithms. 20
cells in Table 4 and 19 cells in Table 5 are highlighted as
the differences between the GA-PSO solution and the
results of the individual GA and PSO methods. As
another example to show the better performance of the
GA-PSO compared to the individual methods, it is
observed that unit 8 is off in the solution of the GA-
PSO, while it was determined on by other methods.
Indeed, due to the lower cost coefficients of unit 4 than
unit 8, the generation of unit 4 is increased during these
hours instead of keeping on the unit 8.

Figure 3 illustrated the convergence of three methods to
find the optimal solutions. As shown in this figure, the
best objective function is obtained by the GA-PSO

algorithm. Trends of these algorithms show that GA-
PSO could be converged in a lower number of iterations.
According to Figure 3, it could be observed that the
parallel GA-PSO has the benefits of both the GA and
PSO algorithms. As it is shown, the GA has a very
important role to lead the GA-PSO procedure to move
towards a better solution in the “657%” iteration.
Moreover, there are changes that have been applied by
the PSO in even iteration numbers of the GA-PSO to
lead the optimization procedure to find better and better
solutions. Therefore, the specific advantages of the GA
and PSO are combined in the GA-PSO method to help
the optimization procedure to find better solutions with
lower iteration numbers.
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Figure 3. The results of three scenario.

Conclusion

The paper addressed the UC problem as one of the main
concerns in the context of power grids. Due to the non-
linearity and complexity of the problem, many
techniques have been developed to optimize the UC.
Here, a parallel GA-PSO method is proposed to
efficiently solve the UC. The developed algorithm
utilizes the features and advantages of both the PSO and
GA to lead the optimization procedure towards a better
solution (to move from the local optimal points to
achieve better solutions). A test system is utilized to
employ the proposed method and show the
effectiveness and efficiency of it.
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Nomenclature

Indices

j Generators;

k Generators’ prohibited zones;

t Scheduling time;

Constants

SUCG;,/SDCi, Start-up/Shut-down costs of the j® unit at hour t [$/each switching];
N Number of units;

T Hortizon time;

HSCj/ CSCj Hot/Cold start-up costs [$ pet each hot/cold start-ups];
MDT;/MUT; Minimum down-time/Minimum up-time of unit number j [hout];
D Demand at time t [MW];

PP, Minimum/Maximum generation limits of j* unit at time t [MW];
SR: Amount of spinning reserve at time t [MW];

RUR;/RDR; Ramp up/Ramp down rates of unit number j [MW /hout];

PZ, Number of prohibited zones of the unit j;

Py 1 plRer Lower/Upper bounds of the K" prohibited zone of j™ unit [MW];
Variables

P Generation of ™ unit at time t [MW];

U, On/off statuses of j unit at time t; in which, 1 is on and 0 is off;
TUTP Time durations that the j™ unit is continuously on/off [hout];
SUL/SDI Start-up/Shut-down indicators;

Functions

F Supply curve of the j™ unit;

jt
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