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ABSTRACT 

The unit commitment (UC) problem has always been considered as one of the main 
activities by the system planners. Due to the non-linear and complex nature of the 
UC, different optimization approaches have been presented to solve the problem. 
In recent years, metaheuristic algorithms have been attracted because of their 
efficiency to optimize complex problems. This paper combines the concepts of two 
algorithms, i.e., the particle swarm optimization (PSO) and genetic algorithm (GA) 
in a parallel manner and proposes a mixed GA-PSO method to optimize the UC 
problem. The simulation results have justified the effectiveness and advantages of 
the proposed method, compared to the individual methods. 

Keywords: Parallel optimization, Unit commitment, Particle swarm optimization, 
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Introduction 

The power generation problem has been focused with 
several studies due to the increasing load demand all 
over the world. Increasing the penetration level of 
different kinds of appliances, transportation facilities 
and industrialization are the main reasons of these 
electrifications. Providing the required electricity 
demand in an economic manner is one of the challenges 
of the planners. Unit commitment (UC) is an 
optimization problem for the operation of the power 
systems. The unit commitment is a problem to optimally 
determine the on/off status of the generation units, as 
well as their corresponding production. The aim of the 
UC is to provide the forecasted load of the system in the 
specific horizon time with the most economic manner, 
while all the constraints and system requirements have 
been overcome [1-4]. 
Since the UC problems are mixed integer NP-hard, 
many researches have been done in order to optimize 
these complex optimization problems. Barani et al. [5] 
improved the binary quantum-inspired gravitational 
search technique and introduced a novel method for 
solving the UC. Ref. [6] solved the UC by considering 
the penetration of wind generation. Abujarad et al. [7] 
provided a survey on the UC in the presence of 

renewable generation units. Different UC models and 
the presented methods to solve the problem is studies in 
his paper. 
In [8] three methods have been utilized to solve a large 
scale UC problem that includes charged search system, 
PSO, and ant colony search. 
Several approaches have been presented in order to 
optimize the UC problem, including [5]: 

- Deterministic approaches (such as priority list [9], 
dynamic programming [10, 11], Lagrangian relaxation 
[12, 13] and the branch-and-bound method [14]); 
- Intelligent approaches (e.g. GA, PSO, simulated 
annealing [15, 16], quantum inspired evolutionary 
algorithm [17] and artificial neural networks [18]). 

Mirjalili et al. [19] have been introduced GWO (grey 
wolf optimizer) method by inspiring from the behavior 
of grey wolves. Afterward, the integrated GWO and 
PSO is utilized for solving the large-scale UC problems 
[20]. Panwar et al. [21] have solved a complex UC 
problem by using the Binary grey wolf optimization 
(GWO). 
One of the important aspects of power systems that 
should be considered in unit committment is the 
stochastic nature of electricity demand and electric 
vehicles charging load. Amini et al. [22] proposed a 
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chance-constrained solution that models the 
probabilistic nature of load demand. Their proposed 
approach decoupled the electric vehicle charging 
demand and the conventional load demand to exploit 
the different patterns and increase the accuracy of 
estimated load. 
Although metaheuristic methods cannot guarantee the 
optimality of their solutions, due to the complex nature 
of the UC, these algorithms have been used widely to 
solve the problem. Indeed, since UC is a large-scale, 
non-linear (due to the non-linear cost terms and 
constraints), mixed-integer and non-convex problem 
(due to the presence of binary variables in order to 
determine the on/off decisions), generally the 
deterministic methods are not efficient to solve it [23, 
24]. These limitations have encouraged researchers to 
utilize metaheuristic approaches [7, 25-27]. 
This paper combines the concepts of PSO and GA in a 
parallel manner to optimize the UC problem. In fact, the 
power of PSO and GA to lead the optimization 
procedure towards the optimum point, as well as their 
ability to move from the local optimum points to the 
global solution have been combined with each other to 
propose a more powerful optimization method. 
At the following, the formulations of the UC problem, 
consisting the objective function and the relevant 
constraints of the problem is presented. Moreover, the 
proposed parallel GA-PSO algorithm will be introduced. 
The numerical analysis section will be provided in order 
to illustrate the effectiveness and advantages of the 
parallel GA-PSO. Finally, the concluding remarks have 
been derived. 

Problem Description 

a. Objective function 

The objective function of the UC has the following cost 
terms [28]: 

• The fuel costs of generating units; 

• The start-up costs of the committed units (including 
hot and cold start-up costs); 

• Shut-down costs of decommitted units. 

Therefore, it can be formulated by (1). 
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where, j , j  and j are fuel cost coefficients of unit j. 

The start-up costs of the generating units are defined as 
follows: 
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b. Problem constraint 

The optimization problem should cope with the 
following constraints [28]. 

• Initial state; 

Initial states denote the generation level of a unit, as well 
as the time that it has been on/off. 

• Power balance restriction; 
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• Ramp-up/down constraints of the units; 
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• Start up and shut down constraints of the units; 

( , ) ( , ) 1, ,SUI j t SDI j t for j N t T+     (9) 

• Prohibited zone; 

The generators may have specific constraints in which 
they should not be operated in some operating ranges. 
These restrictions are known as prohibited operating 
zones. Eq. (10) formulates these constraints. Moreover, 
these prohibited zones are illustrated in Figure 1. 
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Figure 1. Generators’ prohibited zones 

 

• Minimum up/down time limits (MUT/MDT). 

,U

j jMUT T for j N   (11) 

 

,D

j jMDT T for j N   (12) 

Optimization Algorithm 

The metaheuristic methods have been attracted in recent 
years due to their ability to solve the complex problem. 
Panwar et al. [22] implemented the binary GWO method 
to solve the UC. Subba Reddy et al. [30] used the concept 
of GA to optimize the UC problem. Radial movement 
optimization (RMO) algorithm is introduced in [31] for 
the UC. Yu et al. [32] used a Lagrangian relaxation and 
particle swarm optimization method to find the optimal 
solution of the UC. In [33], binary successive method 
and civilized swarm optimization (CSO) approaches are 
integrated with the aim of solving the UC. A PSO-based 
method is used in [34] to find the optimum solution of 
the UC. Kumar et al. [35] used the GA to solve the 
security constrained UC. 
As above-mentioned, the GA and PSO are two 
metaheuristic algorithms that have been utilized in many 
researches. GA has been introduced at first by Holland 
[36] and then is improved by Goldberg [37] and Davis 

[38]. Compared to other optimization methods, the GA 
has more ability to move from the local optimum points 
towards the global solutions. 
The PSO is an algorithm that at first introduced by 
Eberhart and Kennedy by the inspiration of the social 
behavior of bird flocking or fish schooling [39]. 
Compared to other intelligent approaches, the PSO has 
specific advantages (e,g, it is easier for the 
implementation, conceptually is simpler, and 
computationally is more efficient) [40-42]. 
In this paper, with the aim of using the specific 
advantages of the GA and PSO, the parallel GA-PSO 
algorithm is used to solve the UC problem. In the 
proposed approach, each method is responsible to 
continue the optimization procedure towards better 
solutions, in the pre-specified iterations. Here, the GA is 
used to solve the odd iterations, while the PSO solves 
the even iteration numbers. The results that are achieved 
by using one of the methods will be considered as the 
input to the second algorithm for the next iteration. The 
second algorithm will continue the optimization 
procedure of the first one. Therefore, the parallel GA-
PSO uses the advantage of both the methods to better 
scape from the local optimum points and converge to 
better solutions. The procedure of the proposed parallel 
GA-PSO method is illustrated in Figure 2. 
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Figure 2. The flowchart of the parallel GA-PSO algorithm 

 

Simulation Results 

A conventional 10-unit test system [28] is utilized here 
to investigate the performance and advantages of the 
proposed method. The scheduling time of the UC is 
assumed to be 24 hours. All the generation units and 
demand data are driven from [28]. However, the system 
demand, generators operation data and their cost 
coefficients are provided in Tables 1-3 for the ease of 
access. 
In order to compare the advantages of GA-PSO, three 
different scenarios are considered. The first scenario 
solves the UC problem by using the GA algorithm. In 
the second scenario, the problem is optimized by using 

the PSO algorithm. Finally, the proposed parallel GA-
PSO method is employed in the third scenario. 
Tables 4 and V are provided to illustrate the results of 
the UC that are derived by using the GA-PSO. Table 4 
compares the results of the GA-PSO and GA 
algorithms. The differences in the units’ on/off statuses 
are highlighted in this table (the bolded and highlighted 
cells in this table indicates the changes between the 
results of the GA and GA-PSO). As an example, it is 
observed in Table 4 that unit 8 is off as a result of the 
GA-PSO, while it was selected to be on by the GA 
method. The objective functions of the first and third 
scenarios are 631667.6166 [$] and 609473.0067 [$], 
respectively, that shows 22194.6099 [$] cost reduction by 
using the GA-PSO (3.51 percent cost reduction).
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                                      Table 1 
                                      The demand of the test system 

 
 
 

       Table 2 
       Generators’ data 

 
 
 
 

                              Table 3 
                              Generators supply curves’ coefficients 
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             Table 4 
             The comparison results of the GA-PSO and GA 

 
 
Moreover, Table 5 compares the results of the GA-PSO 
and PSO algorithms. The objective functions of the 
second and third scenario are 630210.0148 [$] and 
609473.0067 [$], respectively, that shows 20737.0081 [$] 
cost reduction by implementing the propose method 
(3.29 percent cost reduction). All the differences in the 

units’ statuses as the results of the GA-PSO and PSO 
are determined by the bolded and highlighted cells of 
Table 5. For instance, as the result of the GA-PSO, unit 
9 is off, while it was determined to be on by using the 
PSO.

 
            Table 5 
            The comparison results of the GA-PSO and PSO 

 

 
All the results prove that the parallel GA-PSO method 
is more different than other individual algorithms. 20 
cells in Table 4 and 19 cells in Table 5 are highlighted as 
the differences between the GA-PSO solution and the 
results of the individual GA and PSO methods. As 
another example to show the better performance of the 
GA-PSO compared to the individual methods, it is 
observed that unit 8 is off in the solution of the GA-
PSO, while it was determined on by other methods. 
Indeed, due to the lower cost coefficients of unit 4 than 
unit 8, the generation of unit 4 is increased during these 
hours instead of keeping on the unit 8. 
Figure 3 illustrated the convergence of three methods to 
find the optimal solutions. As shown in this figure, the 
best objective function is obtained by the GA-PSO 

algorithm. Trends of these algorithms show that GA-
PSO could be converged in a lower number of iterations. 
According to Figure 3, it could be observed that the 
parallel GA-PSO has the benefits of both the GA and 
PSO algorithms. As it is shown, the GA has a very 
important role to lead the GA-PSO procedure to move 
towards a better solution in the “657th” iteration. 
Moreover, there are changes that have been applied by 
the PSO in even iteration numbers of the GA-PSO to 
lead the optimization procedure to find better and better 
solutions. Therefore, the specific advantages of the GA 
and PSO are combined in the GA-PSO method to help 
the optimization procedure to find better solutions with 
lower iteration numbers.
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Figure 3. The results of three scenario. 

 

Conclusion 

The paper addressed the UC problem as one of the main 
concerns in the context of power grids. Due to the non-
linearity and complexity of the problem, many 
techniques have been developed to optimize the UC. 
Here, a parallel GA-PSO method is proposed to 
efficiently solve the UC. The developed algorithm 
utilizes the features and advantages of both the PSO and 
GA to lead the optimization procedure towards a better 
solution (to move from the local optimal points to 
achieve better solutions). A test system is utilized to 
employ the proposed method and show the 
effectiveness and efficiency of it. 
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Nomenclature 

Indices  

j Generators; 
k Generators’ prohibited zones; 
t Scheduling time; 

Constants  

SUCi,t/SDCi,t Start-up/Shut-down costs of the jth unit at hour t [$/each switching]; 
N Number of units; 
T Horizon time; 
HSCj/ CSCj Hot/Cold start-up costs [$ per each hot/cold start-ups]; 
MDTj/MUTj Minimum down-time/Minimum up-time of unit number j [hour]; 
Dt Demand at time t [MW]; 

, ,/j t j tP P  Minimum/Maximum generation limits of jth unit at time t [MW]; 

SRt Amount of spinning reserve at time t [MW]; 
RURj/RDRj Ramp up/Ramp down rates of unit number j [MW/hour]; 

jPZ  Number of prohibited zones of the unit j; 

, ,/Lower Upper

j k j kp p  Lower/Upper bounds of the thK  prohibited zone of jth unit [MW]; 

Variables  
0

,j tP  Generation of jth unit at time t [MW]; 

,j tu  On/off statuses of jth unit at time t; in which, 1 is on and 0 is off; 

/U D

j jT T  Time durations that the jth unit is continuously on/off [hour]; 

SUI/SDI Start-up/Shut-down indicators; 

Functions  

,j tF  Supply curve of the jth unit; 
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